

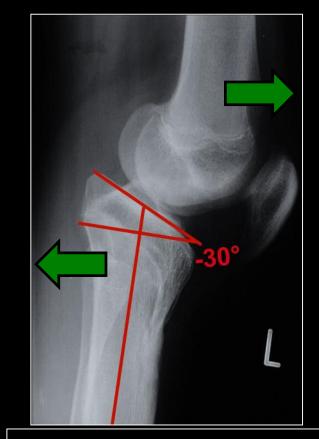
Osteotomy for patients with ACL rupture and Knee instability

Ronald van Heerwaarden MD, PhD

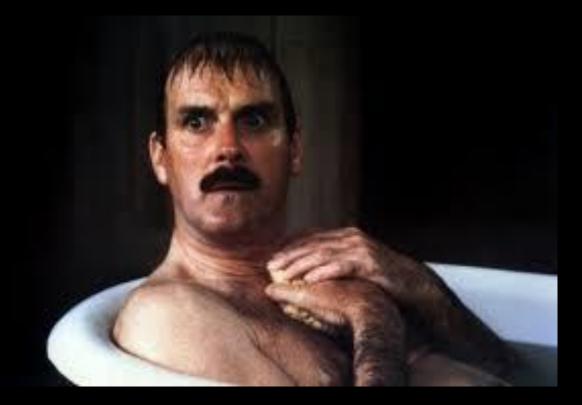
المـركــز الـعـالمي لـلــركــبـة و المفـاصــل

International Knee & Joint Centre

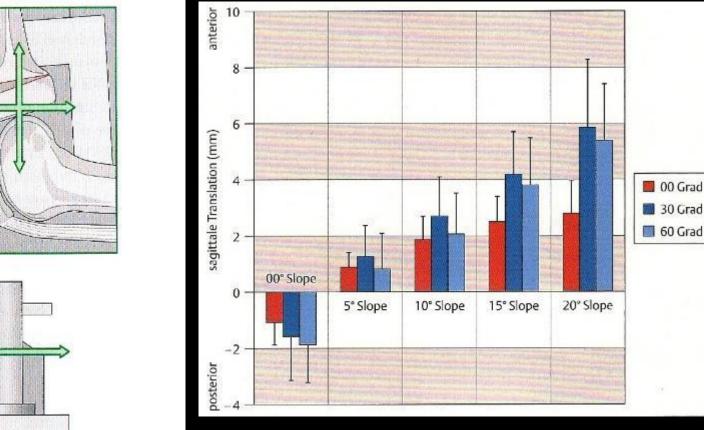
The London Knee Osteotomy Centre

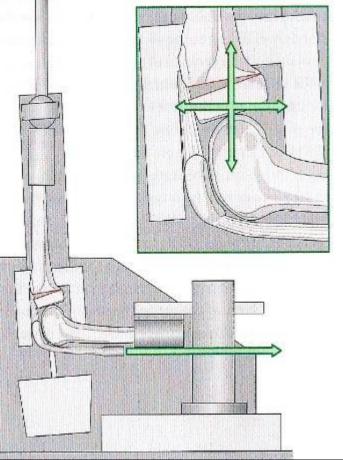

Outline

- Bone deformity and ligaments/instability
- Osteotomies for chronic lig. instability
- Timing / staging
- Where does the PT come into play ?
- Conclusion


Posterior Sag

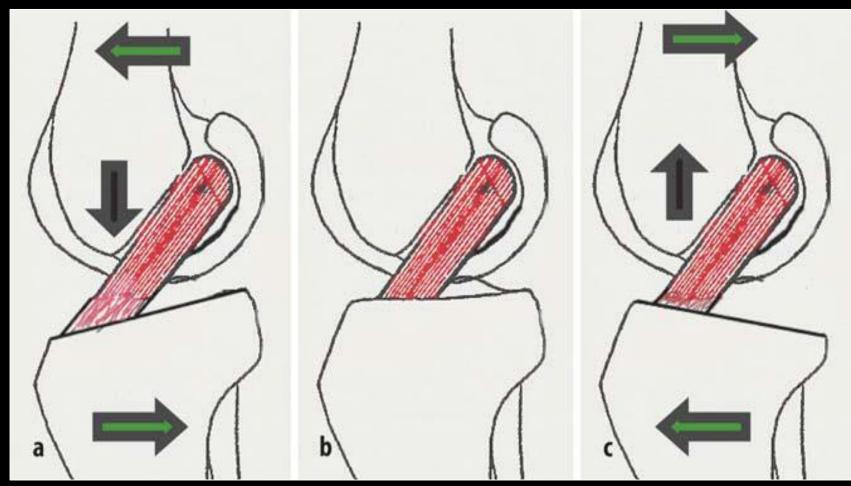
Recurvatum


"... And now for something completely different"



Effects of Tibial Slope

Posterior Cruciate Ligament cut



Agneskirchner JD. Arch Orthop Trauma Surg 2004; 124(9): 575-84.

Effects of Tibial Slope

Imhoff A. Orthopäde 2004; 33:201–207

Effects of Tibial Slope

39 yr F Previous HTO

3 failed ACL reconstr.

Courtesy of Ph. Lobenhoffer

Literature

The Impact of Osseous Malalignment and Realignment Procedures in Knee Ligament Surgery

A Systematic Review of the Clinical Evidence

Thomas Tischer,*^{†‡} MD, Jochen Paul,^{†§} MD, Dietrich Pape,^{†||} MD, Michael T. Hirschmann,^{†¶} MD, Andreas B. Imhoff,^{†#} MD, Stefan Hinterwimmer,[†]** MD, and Matthias J. Feucht,^{†††} MD

Tischer et al. Orthopaedic Journal of Sports Medicine 2017, Mar 27: 5 (3)

Morphologic Variation

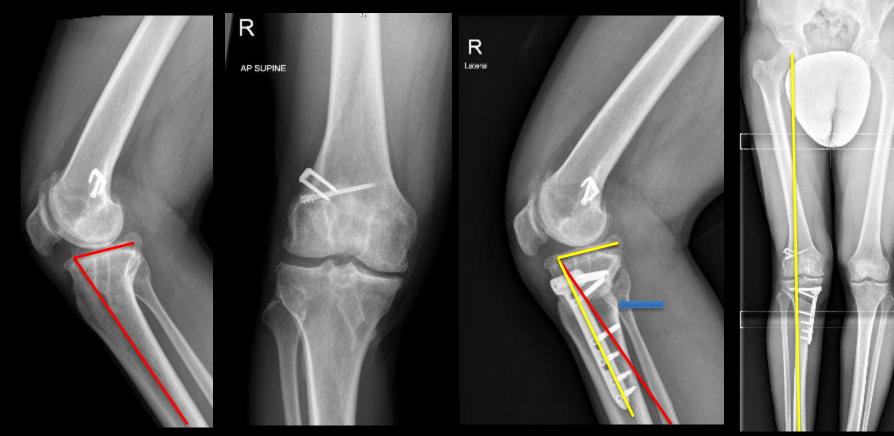
Rheumatol Int. 2002 Aug;22(4):160-4. Epub 2002 Jul 3.

Analysis of limb alignment in the pathogenesis of osteoarthritis: a comparison of Saudi Arabian and Canadian cases.

Cooke TD¹, Harrison L, Khan B, Scudamore A, Chaudhary MA.

Saudi varus leg deformity

- Large varus deformities
- Femur and tibial varus combined
- Additional ligament laxity
- High slope
- 6x more ACL ruptures as compared to USA



IKJC Abu Dhabi

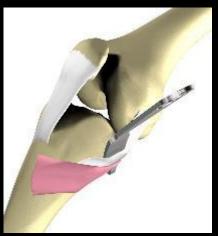
Failed ACL reconstruction medial OA

Open wedge valgization + extension HTO

No ACL Revision

20-

IKJC Abu Dhabi


Outline

- Bone deformity and ligaments/instability
- Osteotomies for chronic lig. instability
- Timing / staging
- Where does the PT come into play ?
- Conclusion

Osteotomy for MCL

OWHTO = release MCL

OWHTO without rel. MCL = retension MCL

Osteotomy for LCL

Fibula shortening = LCL tensioning

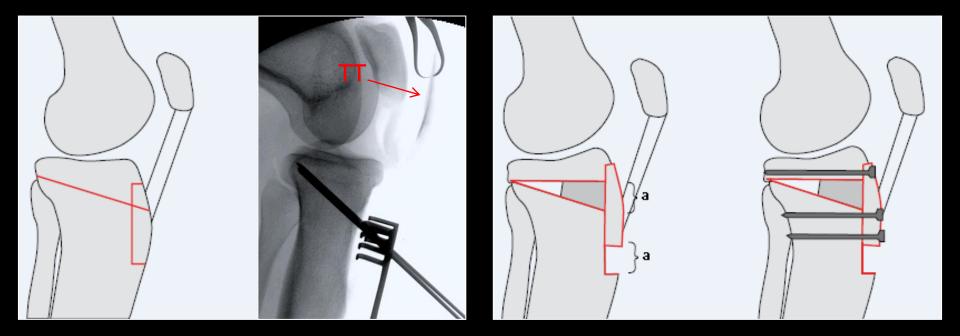
Power of realignment

LCL "laxity"

Power of realignment

Re-alignment creates stability

Tibial external rotation deformity


Tibial exotorsion causing PF pain completely resolved 3 months after rotational HTO with now normal walking pattern.

steotomy for PCL – increase slope

"Biological plating"

Friedmann S. Arthroskopie 2008; 21: 30-38. Bonin N. Orthopäde 2004; 33:193-200. Balestro JC. Tech Knee Surg 2009;8: 126-135. Neyret et al. Oper Tech Sports Med 2000; 8: 67-70.

Osteotomy for ACLdecrease slope

Osteotomy for PLC

Open wedge high tibial osteotomy

Arthur et al, 2007^4 To assess the functional outcomes of patients with grade 3 posterolateral instability and varus malalignment treated with open-wedge HTO

- Prospective observation of 21 patients with chronic PLC deficiency and varus malalignment initially treated with open-wedge HTO
- Isolated PLC deficiency was present in 7 patients, 6
 patients had ACL and PLC deficiency, 6 patients had
 PLC and PCL deficiency, and
 2 patients had PLC, PCL, and ACL deficiency
- 37 mo
 In 38% of patients, secondstage ligamentous reconstruction was not necessary
 - Isolated PLC injuries required second-stage ligamentous reconstruction in 33% of cases compared with 71% of multiligament knee injury cases
 - Low-velocity sports-related injuries required second-stage ligamentous reconstruction in 40% of cases compared with 78% of high-velocity motor vehicle injury cases

Outline

- Bone deformity and ligaments/instability
- Osteotomies for chronic lig. instability
- Timing / staging
- Where does the PT come into play ?
- Conclusion

Timing staging of osteotomy

15 previous surgeries multiligament injury

MCL, PCL, PLC, med meniscus# -MCL repair, reconstr -PCL, PCL revision -PLC, PLC revisions (2 times) Etc...

Osteotomy

Timing staging of osteotomy

Osteotomy first or combined with ligament reconstruction

Reichwein	To assess the functional outcome	Prospective evaluation of	20 mo	٠	Subjective and objective
and	of flexion HTO in patients with	7 patients with failed PCL			IKDC scores were improved
Nebelung,	symptomatic hyperextension	reconstruction and			postoperatively in all patients
2007^{48}	after failed PCL reconstruction	symptomatic hyperextension		•	Second-stage revision PCL
		treated with anterior open-			reconstruction was performed
		wedge flexion HTO (combined			on 3 patients but only
		with varization in 4 patients)			marginally improved the
	•				results
		from 4° preoperatively to			
		11.4° postoperatively, with a			
		mean increase of 6.6°			

Reichwein and Nebelung Unfallchirurg. 2007; 110:597-602. Am J Sports Med. 2007;35:1844-1850

Outline

- Bone deformity and ligaments/instability
- Osteotomies for chronic lig. instability
- Timing / staging
- Where does the PT come into play ?
- Conclusion

Where does the PT come into play ?

- Observe / diagnose deformities
- Notify / suggest in advance
- Instability may be caused by a bone deformity (BD)
- Failure of lig. Reconstruction caused by BD
- CHECK Laxity during rehabilitation
- Send patients back if progression of Rehab is abnormal / stability in not regained
- Remember: the bone always wins

Where does the PT come into play ?

4/2019

Anterior closing wedge + ACL rec.revision

Conclusions

- Key role of osteotomies in chronic (multi-)ligament injuries
- Effect of bone shape (change) is high
- Stage osteotomy first or combined
- Pay attention to bone deformities in (revision) ligament rec REHAB
- THE BONE ALWAYS WINS !